Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-Nitroaniline–2,4,6-trimethoxybenzaldehyde (1/1)

#### Abdullah M. Asiri,<sup>a</sup> Salman A. Khan,<sup>a</sup> Kong Wai Tan<sup>b</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>Chemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 June 2010; accepted 18 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.124; data-to-parameter ratio = 12.3.

In the title co-crystal,  $C_6H_6N_2O_2.C_{10}H_{12}O_4$ , the two components are held together by an  $N-H\cdots O_{aldehyde}$  hydrogen bond. Adjacent co-crystals are linked by weaker  $N-H\cdots O_{nitro}$  hydrogen bonds, forming a linear chain. The two aromatic rings of the components are aligned at 75.2 (1)°. The crystal studied was a non-merohedral twin with a 24% minor component.

#### **Related literature**

For some examples of co-crystals of 4-nitroaniline, see: Bertolasi *et al.* (2001); Dederer & Gieren (1979); Huang *et al.* (1996); Koshima *et al.* (1996); Rashid & Deschamps (2006); Singh *et al.* (2003); Smith *et al.* (1997); Weber (1981); Zaitu *et al.* (1995). For the treatment of non-merohedral twins, see: Spek (2009).



#### **Experimental**

Crystal data C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O<sub>2</sub>·C<sub>10</sub>H<sub>12</sub>O<sub>4</sub>

 $M_r = 334.32$ 

| Monoclinic, $P2_1/c$            | Z = 4                                                         |
|---------------------------------|---------------------------------------------------------------|
| a = 7.4409 (11)  Å              | Mo K $\alpha$ radiation                                       |
| b = 30.022 (5)  Å               | $\mu = 0.11 \text{ mm}^{-1}$                                  |
| c = 6.9400 (11)  Å              | T = 100  K                                                    |
| $\beta = 93.237 (3)^{\circ}$    | $0.15 \times 0.10 \times 0.05 \text{ mm}$                     |
| V = 154/.9 (4) A <sup>2</sup>   |                                                               |
| Data collection                 |                                                               |
| Bruker SMART APEX               | 2722 independent reflections                                  |
| diffractometer                  | 1834 reflections with $I > 2\sigma(I)$                        |
| 8127 measured reflections       | $R_{\text{int}} = 0.059$                                      |
| Refinement                      |                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | 221 parameters                                                |
| $wR(F^2) = 0.124$               | H-atom parameters constrained                                 |
| S = 1.01                        | $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$  |
| 2722 reflections                | $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$ |

organic compounds

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$                                                                           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} N1 - H12 \cdots O1 \\ N1 - H11 \cdots O5^{i} \\ N1 - H11 \cdots O6^{i} \end{array}$ | 0.86 | 2.16                    | 3.016 (3)    | 172                                  |
|                                                                                                       | 0.86 | 2.50                    | 3.288 (3)    | 152                                  |
|                                                                                                       | 0.86 | 2.50                    | 3.293 (3)    | 154                                  |

Symmetry code: (i)  $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2271).

#### References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). New J. Chem. 25, 408–415 Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..
- Dederer, B. & Gieren, A. (1979). Naturwissenschaften, 66, 470-471.
- Huang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868–2871.
- Koshima, H., Wang, Y., Matsuura, T., Mizutani, H., Isako, H., Miyahara, I. & Hirostu, K. (1996). *Mol. Cryst. Liq. Cryst.* 279, 265–274.
- Rashid, A. N. & Deschamps, J. R. (2006). J. Mol. Struct. 787, 216-219.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, N. B., Pathak, A. & Frohlich, R. (2003). Aust. J. Chem. 56, 329-333.
- Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 307–317.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Weber, G. (1981). Z. Naturforsch. B36, 896–897.
- Westein C. D. (2010) L. Angl. Court Schwitted
- Westrip, S. P. (2010). J. Appl. Cryst. Submitted.
- Zaitu, S., Miwa, Y. & Taga, T. (1995). Acta Cryst. C51, 2390-2392.

supplementary materials

Acta Cryst. (2010). E66, o1765 [doi:10.1107/S1600536810023664]

## 4-Nitroaniline-2,4,6-trimethoxybenzaldehyde (1/1)

### A. M. Asiri, S. A. Khan, K. W. Tan and S. W. Ng

#### Comment

Aromatic aldehydes readily condense with aromatic amines to yield Schiff bases. However, 2,4,6-trimethoxylbenzaldehyde and 4-nitroaniline reactants did not condense but instead co-crystallized in the attempted synthesis. The condensation probably did not proceed owing to the decreased basicity of the amino group, which is situated opposite the electron-withdrawing nitro group in the aromatic ring. The co-crystal (Scheme I, Fig. 1) has the components linked by an H–N···O hydrogen bond; the two aromatic rings aligned at 75.2 (1) °. Adjacent co-crystals are linked by weaker N–H···O<sub>nitro</sub> hydrogen bonds to form a linear chain.

4-Nitroaniline forms a number of co-crystals with other neutral compounds; for their description, see: Bertolasi *et al.* (2001); Dederer & Gieren (1979); Huang *et al.* (1996); Koshima *et al.* (1996); Rashid & Deschamps (2006); Singh *et al.* (2003); Smith *et al.* (1997); Weber (1981); Zaitu *et al.* (1995).

#### **Experimental**

2,4, 6-Trimethoxybenzaldehyde (0.50 g, 3.3 mmol) and 4-nitroaniline (0.57 g, 3.3 mmol) were heated in methanol (15 ml) for 5 h. Yellow crystals separated from the cool solution after a day.

#### Refinement

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, N–H 0.86 Å; U(H) 1.2 to  $1.5U_{eq}(C,N)$ ] and were included in the refinement in the riding model approximation.

The crystal studied is a non-merohedral twin; the twin law  $(1 \ 0 \ 0.121, 0 - 1 \ 0, 0 \ 0 - 1)$  as given by *PLATON* (Spek, 2009) was used to de-twin the diffraction data.

#### Figures



Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the  $C_6H_6N_2O_2-C_{10}H_{12}O_4$  co-crystal at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

#### 4-Nitroaniline-2,4,6-trimethoxybenzaldehyde (1/1)

*Crystal data* C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O<sub>2</sub>·C<sub>10</sub>H<sub>12</sub>O<sub>4</sub>

F(000) = 704

# supplementary materials

| $M_r = 334.32$                 |
|--------------------------------|
| Monoclinic, $P2_1/c$           |
| Hall symbol: -P 2ybc           |
| <i>a</i> = 7.4409 (11) Å       |
| <i>b</i> = 30.022 (5) Å        |
| c = 6.9400 (11)  Å             |
| $\beta = 93.237 \ (3)^{\circ}$ |
| $V = 1547.9 (4) \text{ Å}^3$   |
| Z = 4                          |

#### Data collection

| Bruker SMART APEX<br>diffractometer      | 1834 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.059$                                                     |
| graphite                                 | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ |
| ω scans                                  | $h = -8 \rightarrow 8$                                                    |
| 8127 measured reflections                | $k = -32 \rightarrow 35$                                                  |
| 2722 independent reflections             | $l = -8 \longrightarrow 8$                                                |

 $D_{\rm x} = 1.435 {\rm Mg m}^{-3}$ 

 $0.15\times0.10\times0.05~mm$ 

 $\theta = 2.7-24.4^{\circ}$  $\mu = 0.11 \text{ mm}^{-1}$ T = 100 KPrism, yellow

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 1019 reflections

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | Hydrogen site location: inferred from neighbouring sites                                           |
| $wR(F^2) = 0.124$               | H-atom parameters constrained                                                                      |
| <i>S</i> = 1.01                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0537P)^{2} + 0.141P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 2722 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                |
| 221 parameters                  | $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$                                              |
| 0 restraints                    | $\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$                                             |

|     | x           | У           | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|------------|---------------------------|
| 01  | 0.7019 (2)  | 0.57392 (6) | 0.7861 (3) | 0.0238 (5)                |
| O2  | 0.7670 (2)  | 0.61120 (6) | 0.4418 (2) | 0.0182 (4)                |
| O3  | 1.3371 (2)  | 0.57367 (6) | 0.1850 (2) | 0.0203 (4)                |
| O4  | 1.1646 (2)  | 0.51253 (6) | 0.7725 (2) | 0.0176 (4)                |
| O5  | 0.0363 (2)  | 0.80574 (6) | 0.5273 (3) | 0.0266 (5)                |
| O6  | -0.0908 (2) | 0.74324 (7) | 0.4450 (3) | 0.0291 (5)                |
| N1  | 0.6593 (3)  | 0.67379 (7) | 0.7727 (3) | 0.0233 (5)                |
| H11 | 0.7505      | 0.6884      | 0.8209     | 0.028*                    |
| H12 | 0.6631      | 0.6452      | 0.7670     | 0.028*                    |
| N2  | 0.0398 (3)  | 0.76456 (7) | 0.5159 (3) | 0.0193 (5)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C1   | 0.8433 (3) | 0.55435 (8) | 0.7589 (4) | 0.0177 (6) |
|------|------------|-------------|------------|------------|
| H1   | 0.8764     | 0.5314      | 0.8482     | 0.021*     |
| C2   | 0.9658 (3) | 0.56212 (8) | 0.6066 (3) | 0.0152 (6) |
| C3   | 0.9285 (3) | 0.59010 (8) | 0.4462 (4) | 0.0154 (6) |
| C4   | 1.0482 (3) | 0.59515 (8) | 0.3011 (4) | 0.0155 (6) |
| H4   | 1.0203     | 0.6140      | 0.1936     | 0.019*     |
| C5   | 1.2098 (3) | 0.57189 (8) | 0.3175 (4) | 0.0157 (6) |
| C6   | 1.2542 (3) | 0.54410 (8) | 0.4744 (4) | 0.0170 (6) |
| Н6   | 1.3662     | 0.5289      | 0.4834     | 0.020*     |
| C7   | 1.1335 (3) | 0.53914 (8) | 0.6155 (3) | 0.0144 (6) |
| C8   | 0.7184 (3) | 0.63908 (9) | 0.2781 (4) | 0.0216 (6) |
| H8A  | 0.5983     | 0.6516      | 0.2923     | 0.032*     |
| H8B  | 0.7179     | 0.6213      | 0.1597     | 0.032*     |
| H8C  | 0.8061     | 0.6633      | 0.2709     | 0.032*     |
| C9   | 1.3034 (3) | 0.60080 (8) | 0.0177 (4) | 0.0198 (6) |
| H9A  | 1.4039     | 0.5980      | -0.0669    | 0.030*     |
| H9B  | 1.2913     | 0.6320      | 0.0570     | 0.030*     |
| Н9С  | 1.1920     | 0.5910      | -0.0516    | 0.030*     |
| C10  | 1.3340 (3) | 0.48903 (9) | 0.7879 (4) | 0.0193 (6) |
| H10A | 1.3403     | 0.4709      | 0.9054     | 0.029*     |
| H10B | 1.4332     | 0.5106      | 0.7934     | 0.029*     |
| H10C | 1.3436     | 0.4697      | 0.6751     | 0.029*     |
| C11  | 0.5099 (3) | 0.69579 (9) | 0.7057 (3) | 0.0168 (6) |
| C12  | 0.3577 (3) | 0.67245 (9) | 0.6292 (4) | 0.0189 (6) |
| H12A | 0.3622     | 0.6409      | 0.6183     | 0.023*     |
| C13  | 0.2034 (3) | 0.69466 (9) | 0.5705 (4) | 0.0186 (6) |
| H13  | 0.1006     | 0.6786      | 0.5216     | 0.022*     |
| C14  | 0.1986 (3) | 0.74094 (8) | 0.5832 (4) | 0.0165 (6) |
| C15  | 0.3483 (3) | 0.76498 (8) | 0.6542 (3) | 0.0162 (6) |
| H15  | 0.3440     | 0.7966      | 0.6610     | 0.019*     |
| C16  | 0.5015 (3) | 0.74254 (9) | 0.7139 (4) | 0.0176 (6) |
| H16  | 0.6040     | 0.7588      | 0.7617     | 0.021*     |

# Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01 | 0.0193 (10) | 0.0228 (11) | 0.0302 (11) | 0.0076 (8)   | 0.0082 (8)   | 0.0052 (9)   |
| 02 | 0.0152 (9)  | 0.0201 (10) | 0.0195 (10) | 0.0065 (8)   | 0.0028 (7)   | 0.0045 (8)   |
| O3 | 0.0188 (10) | 0.0228 (11) | 0.0200 (10) | 0.0060 (8)   | 0.0070 (8)   | 0.0085 (8)   |
| O4 | 0.0163 (9)  | 0.0172 (10) | 0.0195 (10) | 0.0054 (7)   | 0.0023 (7)   | 0.0049 (8)   |
| 05 | 0.0257 (11) | 0.0204 (12) | 0.0337 (12) | 0.0076 (9)   | 0.0015 (8)   | 0.0010 (9)   |
| O6 | 0.0173 (10) | 0.0360 (13) | 0.0332 (12) | -0.0005 (9)  | -0.0068 (9)  | -0.0050 (10) |
| N1 | 0.0213 (12) | 0.0170 (13) | 0.0311 (13) | 0.0035 (10)  | -0.0030 (10) | -0.0009 (11) |
| N2 | 0.0183 (12) | 0.0219 (14) | 0.0178 (12) | 0.0011 (10)  | 0.0028 (9)   | -0.0001 (10) |
| C1 | 0.0207 (14) | 0.0123 (14) | 0.0201 (14) | 0.0010 (12)  | 0.0005 (11)  | 0.0014 (11)  |
| C2 | 0.0160 (13) | 0.0131 (14) | 0.0165 (13) | -0.0013 (10) | 0.0012 (10)  | -0.0016 (11) |
| C3 | 0.0133 (13) | 0.0136 (14) | 0.0189 (13) | 0.0016 (11)  | -0.0017 (10) | -0.0027 (11) |
| C4 | 0.0157 (13) | 0.0139 (14) | 0.0171 (13) | -0.0008 (10) | 0.0015 (10)  | -0.0010 (11) |

# supplementary materials

| C5  | 0.0154 (13) | 0.0147 (14) | 0.0174 (13) | -0.0017 (11) | 0.0039 (10)  | -0.0015 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C6  | 0.0136 (13) | 0.0142 (14) | 0.0230 (14) | 0.0022 (11)  | -0.0003 (11) | 0.0002 (11)  |
| C7  | 0.0190 (14) | 0.0098 (14) | 0.0141 (13) | -0.0002 (10) | -0.0012 (10) | -0.0018 (11) |
| C8  | 0.0207 (14) | 0.0211 (16) | 0.0227 (14) | 0.0046 (12)  | -0.0017 (11) | 0.0062 (12)  |
| C9  | 0.0239 (15) | 0.0173 (15) | 0.0185 (14) | 0.0015 (11)  | 0.0035 (11)  | 0.0044 (12)  |
| C10 | 0.0148 (13) | 0.0199 (15) | 0.0230 (14) | 0.0057 (11)  | 0.0004 (11)  | 0.0045 (12)  |
| C11 | 0.0205 (14) | 0.0186 (15) | 0.0118 (13) | 0.0037 (11)  | 0.0052 (11)  | -0.0005 (11) |
| C12 | 0.0246 (14) | 0.0121 (14) | 0.0200 (14) | -0.0020 (12) | 0.0025 (11)  | 0.0003 (11)  |
| C13 | 0.0175 (14) | 0.0218 (16) | 0.0166 (14) | -0.0044 (12) | 0.0029 (11)  | -0.0013 (12) |
| C14 | 0.0154 (13) | 0.0175 (15) | 0.0168 (13) | 0.0009 (11)  | 0.0011 (10)  | 0.0009 (11)  |
| C15 | 0.0212 (14) | 0.0122 (14) | 0.0158 (13) | -0.0003 (11) | 0.0056 (11)  | -0.0014 (11) |
| C16 | 0.0165 (13) | 0.0210 (16) | 0.0152 (13) | 0.0000 (11)  | 0.0011 (11)  | -0.0023 (11) |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| O1—C1      | 1.229 (3)   | C6—C7         | 1.374 (3) |
|------------|-------------|---------------|-----------|
| O2—C3      | 1.357 (3)   | С6—Н6         | 0.9500    |
| O2—C8      | 1.441 (3)   | C8—H8A        | 0.9800    |
| O3—C5      | 1.358 (3)   | C8—H8B        | 0.9800    |
| О3—С9      | 1.428 (3)   | C8—H8C        | 0.9800    |
| O4—C7      | 1.360 (3)   | С9—Н9А        | 0.9800    |
| O4—C10     | 1.444 (3)   | С9—Н9В        | 0.9800    |
| O5—N2      | 1.239 (3)   | С9—Н9С        | 0.9800    |
| O6—N2      | 1.242 (3)   | C10—H10A      | 0.9800    |
| N1-C11     | 1.352 (3)   | C10—H10B      | 0.9800    |
| N1—H11     | 0.8600      | C10—H10C      | 0.9800    |
| N1—H12     | 0.8600      | C11—C16       | 1.406 (4) |
| N2-C14     | 1.434 (3)   | C11—C12       | 1.410 (3) |
| C1—C2      | 1.454 (3)   | C12—C13       | 1.370 (3) |
| C1—H1      | 0.9500      | C12—H12A      | 0.9500    |
| С2—С3      | 1.409 (3)   | C13—C14       | 1.393 (3) |
| С2—С7      | 1.424 (3)   | С13—Н13       | 0.9500    |
| C3—C4      | 1.390 (3)   | C14—C15       | 1.394 (3) |
| C4—C5      | 1.389 (3)   | C15—C16       | 1.368 (3) |
| C4—H4      | 0.9500      | C15—H15       | 0.9500    |
| С5—С6      | 1.397 (3)   | C16—H16       | 0.9500    |
| C3—O2—C8   | 118.10 (19) | O2—C8—H8C     | 109.5     |
| С5—О3—С9   | 118.39 (19) | H8A—C8—H8C    | 109.5     |
| C7—O4—C10  | 117.03 (19) | H8B—C8—H8C    | 109.5     |
| C11—N1—H11 | 120.0       | O3—C9—H9A     | 109.5     |
| C11—N1—H12 | 120.0       | O3—C9—H9B     | 109.5     |
| H11—N1—H12 | 120.0       | H9A—C9—H9B    | 109.5     |
| O5—N2—O6   | 121.4 (2)   | O3—C9—H9C     | 109.5     |
| O5—N2—C14  | 119.5 (2)   | Н9А—С9—Н9С    | 109.5     |
| O6—N2—C14  | 119.1 (2)   | H9B—C9—H9C    | 109.5     |
| O1—C1—C2   | 127.8 (2)   | O4—C10—H10A   | 109.5     |
| 01—C1—H1   | 116.1       | O4—C10—H10B   | 109.5     |
| С2—С1—Н1   | 116.1       | H10A—C10—H10B | 109.5     |
| C3—C2—C7   | 117.2 (2)   | O4C10H10C     | 109.5     |

| C3—C2—C1     | 124.5 (2)  | H10A—C10—H10C   | 109.5      |
|--------------|------------|-----------------|------------|
| C7—C2—C1     | 118.3 (2)  | H10B-C10-H10C   | 109.5      |
| O2—C3—C4     | 122.4 (2)  | N1-C11-C16      | 120.7 (2)  |
| O2—C3—C2     | 115.5 (2)  | N1-C11-C12      | 120.9 (2)  |
| C4—C3—C2     | 122.1 (2)  | C16—C11—C12     | 118.3 (2)  |
| C3—C4—C5     | 118.2 (2)  | C13—C12—C11     | 120.8 (2)  |
| C3—C4—H4     | 120.9      | C13—C12—H12A    | 119.6      |
| С5—С4—Н4     | 120.9      | C11—C12—H12A    | 119.6      |
| O3—C5—C4     | 123.9 (2)  | C12—C13—C14     | 119.4 (2)  |
| O3—C5—C6     | 114.1 (2)  | С12—С13—Н13     | 120.3      |
| C4—C5—C6     | 122.0 (2)  | C14—C13—H13     | 120.3      |
| C7—C6—C5     | 119.0 (2)  | C15—C14—C13     | 121.1 (2)  |
| С7—С6—Н6     | 120.5      | C15—C14—N2      | 119.1 (2)  |
| С5—С6—Н6     | 120.5      | C13—C14—N2      | 119.7 (2)  |
| O4—C7—C6     | 123.1 (2)  | C16—C15—C14     | 119.2 (2)  |
| O4—C7—C2     | 115.4 (2)  | С16—С15—Н15     | 120.4      |
| C6—C7—C2     | 121.5 (2)  | C14—C15—H15     | 120.4      |
| O2—C8—H8A    | 109.5      | C15—C16—C11     | 121.2 (2)  |
| O2—C8—H8B    | 109.5      | С15—С16—Н16     | 119.4      |
| H8A—C8—H8B   | 109.5      | C11—C16—H16     | 119.4      |
| O1—C1—C2—C3  | -9.3 (4)   | C5—C6—C7—C2     | -0.9 (4)   |
| O1—C1—C2—C7  | 172.5 (2)  | C3—C2—C7—O4     | 179.9 (2)  |
| C8—O2—C3—C4  | 1.2 (3)    | C1—C2—C7—O4     | -1.8 (3)   |
| C8—O2—C3—C2  | -177.9 (2) | C3—C2—C7—C6     | 0.2 (3)    |
| C7—C2—C3—O2  | 179.5 (2)  | C1—C2—C7—C6     | 178.6 (2)  |
| C1—C2—C3—O2  | 1.3 (4)    | N1-C11-C12-C13  | 176.7 (2)  |
| C7—C2—C3—C4  | 0.5 (3)    | C16-C11-C12-C13 | -2.2 (4)   |
| C1—C2—C3—C4  | -177.7 (2) | C11—C12—C13—C14 | 1.3 (4)    |
| O2—C3—C4—C5  | -179.5 (2) | C12-C13-C14-C15 | 0.2 (4)    |
| C2—C3—C4—C5  | -0.5 (4)   | C12—C13—C14—N2  | 177.8 (2)  |
| C9—O3—C5—C4  | -0.4 (3)   | O5—N2—C14—C15   | -2.2 (3)   |
| C9—O3—C5—C6  | 179.3 (2)  | O6—N2—C14—C15   | 176.9 (2)  |
| C3—C4—C5—O3  | 179.4 (2)  | O5-N2-C14-C13   | -179.9 (2) |
| C3—C4—C5—C6  | -0.2 (4)   | O6—N2—C14—C13   | -0.8 (3)   |
| O3—C5—C6—C7  | -178.8 (2) | C13-C14-C15-C16 | -0.6 (4)   |
| C4—C5—C6—C7  | 0.9 (4)    | N2-C14-C15-C16  | -178.3 (2) |
| C10—O4—C7—C6 | 0.3 (3)    | C14—C15—C16—C11 | -0.3 (4)   |
| C10—O4—C7—C2 | -179.4 (2) | N1-C11-C16-C15  | -177.2 (2) |
| C5—C6—C7—O4  | 179.5 (2)  | C12—C11—C16—C15 | 1.7 (4)    |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                          | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|--------------------------------------------------|-------------|--------------|--------------|------------------------------------|
| N1—H12…O1                                        | 0.86        | 2.16         | 3.016 (3)    | 172                                |
| N1—H11···O5 <sup>i</sup>                         | 0.86        | 2.50         | 3.288 (3)    | 152                                |
| N1—H11···O6 <sup>i</sup>                         | 0.86        | 2.50         | 3.293 (3)    | 154                                |
| Symmetry codes: (i) $x+1$ , $-y+3/2$ , $z+1/2$ . |             |              |              |                                    |



